Richard SMITH, University College Dublin

"Lipschitz-free spaces, Lipschitz spaces and de Leeuw representations"

Let (M, d) be a complete metric space with base point 0, define the completely metrisable space $\widetilde{M} = \{(x, y) \in M \times M : x \neq y\}$, and denote by $\beta \widetilde{M}$ its Stone-Čech compactification. The *de Leeuw transform* $\Phi : \operatorname{Lip}_0(M) \to C(\beta \widetilde{M})$ is given by

$$\Phi f(x,y) = \frac{f(x) - f(y)}{d(x,y)}, \quad f \in \operatorname{Lip}_0(M), \ (x,y) \in \widetilde{M},$$

and extending continuously to $\beta \widetilde{M}$. This is a linear isometric embedding whose adjoint Φ^* : $C(\beta \widetilde{M})^* \to \operatorname{Lip}_0(M)^*$ is a quotient map.

My coauthors and I have embarked on a systematic and ongoing study of the de Leeuw transform. Given $\psi \in \operatorname{Lip}_0(M)^*$, there exist positive Radon measures μ on $\beta \widetilde{M}$ such that $\Phi^*\mu = \psi$ and $\|\mu\| = \|\psi\|$. Such measures μ we call optimal (de Leeuw) representations of ϕ . If such a μ is concentrated on \widetilde{M} , then $\Phi^*\mu$ is said to be a convex integral of molecules; in this case $\Phi^*\mu \in \mathcal{F}(M)$ and behaves nicely. However, not every element of $\mathcal{F}(M)$ (or any element of $\operatorname{Lip}_0(M)^* \setminus \mathcal{F}(M)$) is a convex integral of molecules. We extend the theory of optimal representations to include such elements, with a view to gleaning further information about the structure of $\mathcal{F}(M)$ and $\operatorname{Lip}_0(M)^*$.

To this end, we present the Lipschitz realcompactification $(M^{\mathcal{R}}, \tau)$ of M, a natural τ -lower semicontinuous metric extension \overline{d} of d to M, and explore the fundamental properties of $(M^{\mathcal{R}}, \overline{d}, \tau)$. We compare \overline{d} with the continuous extension of d as a function on \widetilde{M} to $\beta \widetilde{M}$ and classify elements $\zeta \in \beta \widetilde{M}$ according to the value of $\|\Phi^* \delta_{\zeta}\|$. We conclude by establishing a relationship between the sets on which optimal representations can be concentrated and the key concept of cyclical monotonicity from optimal transport theory, particularly in the context of functionals in $\operatorname{Lip}_0(M)^*$ that 'avoid infinity'.

This is joint work with Ramón Aliaga (Universitat Politècnica de València) and Eva Pernecká (Czech Technical University, Prague).